organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-(3-bromo-2-thienyl)-2-oxo-6phenylcyclohex-3-ene-1-carboxylate

Andreas Fischer,^a* H. S. Yathirajan,^b B. V. Ashalatha,^c B. Narayana^c and B. K. Sarojini^d

^aInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: afischer@kth.se

Received 4 December 2007; accepted 24 January 2008

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.043; wR factor = 0.090; data-to-parameter ratio = 18.0.

The title compound, C₁₉H₁₇BrO₃S, crystallizes with two molecules in the asymmetric unit. The methyl group of one molecule is disordered approximately equally over two positions. The dihedral angles between the thiophene and phenyl groups are 68.5 (2) and 67.5 (2) $^{\circ}$ in the two molecules.

Related literature

For related structures, see Fischer et al. (2007a,b). For related literature, see: House (1972); Tabba et al. (1995); Dimmock et al. (1999).

Experimental

Crystal data

C ₁₉ H ₁₇ BrO ₃ S	$\gamma = 90.235 \ (13)^{\circ}$
$M_r = 405.31$	V = 1731.3 (4) Å ³
Triclinic, $P\overline{1}$	Z = 4
a = 8.8925 (8) Å	Mo $K\alpha$ radiation
b = 11.713 (2) Å	$\mu = 2.50 \text{ mm}^{-1}$
c = 16.853 (2) Å	T = 130 K
$\alpha = 94.317 \ (11)^{\circ}$	$0.30 \times 0.17 \times 0.05 \text{ mm}$
$\beta = 98.436 \ (10)^{\circ}$	

Data collection

Bruker Nonius KappaCCD diffractometer Absorption correction: numerical (HABITUS: Herrendorf & Bärnighausen, 1997) $T_{\min} = 0.638, T_{\max} = 0.843$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	438 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.84 \text{ e} \text{ Å}^{-3}$
7898 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

40436 measured reflections 7898 independent reflections

 $R_{\rm int} = 0.073$

6074 reflections with $I > 2\sigma(I)$

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2008).

The Swedish research council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2059).

References

- Brandenburg, K. (2007). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany,
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1150.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o254-o255.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, 03616.
- Herrendorf, W. & Bärnighausen, H. (1997). HABITUS. University of Karlsruhe, Germany.
- House, H. O. (1972). Modern Synthetic Reactions, 2nd ed., pp. 595-632. Menlo Park, California: Benjamin-Cummings Pub. Co.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tabba, H. D., Yousef, N. M. & Alarab, M. M. (1995). Collect. Czech. Chem. Commun. 60, 594-604.

Westrip, S. P. (2008). publCIF. In preparation.

Acta Cryst. (2008). E64, o560 [doi:10.1107/S1600536808002717]

Ethyl 4-(3-bromo-2-thienyl)-2-oxo-6-phenylcyclohex-3-ene-1-carboxylate

A. Fischer, H. S. Yathirajan, B. V. Ashalatha, B. Narayana and B. K. Sarojini

Comment

Chalcones and the corresponding heterocyclic analogs are valuable intermediates in organic synthesis and exhibit a multitude of biological activities (Dimmock *et al.*, 1999). An important feature of chalcones and their heteroanalogs is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts (House, 1972). This type of reaction may be exploited with the goal of obtaining highly functionalized cyclohexene derivatives (Tabba *et al.*, 1995). In view of the importance of these derivatives and continuing our efforts in this field (Fischer *et al.*, 2007*a*; 2007*b*), a new derivative, the title compound, (I), has been prepared and its crystal structure is reported in this paper.

The structure of (I) contains two molecules in an asymmetric unit (Figs. 1 and 2). A methyl C-atom of methoxy group in the molecule 1, presented in Fig. 1 is disordered over two sites C19 and C19'. The geometry in the two molecules is unexceptional. The crystal packing is stabilized by van der Waals forces. The dihedral angles between the thiophene groups and phenyl groups in the two molecules are 68.5 (2) and 67.5 (2)°.

Experimental

(2E)-1-(3-Bromo-2-thienyl)-3-phenylprop-2-en-1-one (1.5 g, 5 mmol) and ethyl acetoacetate (0.65 g, 5 mmol) were refluxed for 2 hr in 10–15 ml e thanol in the presence of 0.8 ml 10% NaOH. The reaction mixture was cooled to room temperature and the reaction mass was filtered and recrystallized using methanol. Crystals were grown from acetone (m.p. 399–400 K).

Refinement

Hydrogen atoms were placed at calculated positions with C—H distances: 0.95, 0.98 and 0.99 Å for aromatic, methyl and methylene groups, respectively, and were included in the refinements in riding mode with $U_{iso} = 1.2$ and 1.5 time U_{eq} of the carrier atoms for non-methyl and methyl groups, respectively. A methyl C-atom of methoxy group in molecule 1 was disordered over two positions C19 and C19' with site occupation factors of 0.513 (6) and 0.487 (6), respectively.

Figures

Fig. 1. The structure of molecule 1 in the asymmetric unit; displacement ellipsoids have been plotted at the 50% probability level. Only one of the conformational isomers is shown.

Fig. 2. The structure of molecule 2 in the asymmetric unit; displacement ellipsoids have been plotted at the 50% probability level.

Ethyl 4-(3-bromo-2-thienyl)-2-oxo-6-phenylcyclohex-3-ene-1-carboxylate

Crystal data	
C ₁₉ H ₁₇ BrO ₃ S	Z = 4
$M_r = 405.32$	$F_{000} = 824$
Triclinic, PT	$D_{\rm x} = 1.555 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 8.8925 (8) Å	Cell parameters from 44 reflections
<i>b</i> = 11.713 (2) Å	$\theta = 6.3 - 19.4^{\circ}$
c = 16.853 (2) Å	$\mu = 2.50 \text{ mm}^{-1}$
$\alpha = 94.317 \ (11)^{\circ}$	T = 130 K
$\beta = 98.436 \ (10)^{\circ}$	Plate, colourless
$\gamma = 90.235 \ (13)^{\circ}$	$0.30\times0.17\times0.05~mm$
$V = 1731.3 (4) \text{ Å}^3$	

Data collection

Bruker Nonius KappaCCD diffractometer	6074 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.073$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}$
Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997)	$\theta_{\min} = 4.5^{\circ}$
$T_{\min} = 0.638, T_{\max} = 0.843$	$h = -11 \rightarrow 11$
40436 measured reflections	$k = -15 \rightarrow 15$
7898 independent reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0305P)^2 + 2.19P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.090$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.84 \text{ e} \text{ Å}^{-3}$
7898 reflections	$\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$
438 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Br1	0.99977 (4)	0.72535 (2)	0.421420 (19)	0.03009 (9)	
S1	0.66855 (8)	0.46246 (6)	0.45787 (4)	0.02458 (16)	
01	1.1493 (2)	0.73022 (18)	0.71856 (13)	0.0311 (5)	
O2	1.1039 (3)	0.52832 (19)	0.83761 (14)	0.0368 (5)	
O3	1.0313 (3)	0.69989 (19)	0.88526 (14)	0.0408 (6)	
C1	0.6729 (3)	0.4794 (3)	0.35854 (18)	0.0263 (6)	
C2	0.7753 (3)	0.5611 (2)	0.34871 (18)	0.0236 (6)	
C3	0.8510 (3)	0.6105 (2)	0.42277 (17)	0.0212 (6)	
C4	0.8073 (3)	0.5679 (2)	0.49033 (17)	0.0203 (6)	
C5	0.8539 (3)	0.5935 (2)	0.57634 (17)	0.0197 (6)	
C6	0.9826 (3)	0.6524 (2)	0.60774 (18)	0.0214 (6)	
C7	1.0306 (3)	0.6775 (2)	0.69339 (18)	0.0225 (6)	
C8	0.9305 (3)	0.6373 (2)	0.75173 (17)	0.0213 (6)	
C9	0.8343 (3)	0.5321 (2)	0.71617 (17)	0.0208 (6)	
C10	0.7514 (3)	0.5522 (2)	0.63266 (16)	0.0206 (6)	
C11	0.7227 (3)	0.4959 (2)	0.76997 (17)	0.0209 (6)	
C12	0.7020 (3)	0.3799 (2)	0.77736 (19)	0.0285 (7)	
C13	0.5923 (4)	0.3416 (3)	0.8206 (2)	0.0361 (8)	
C14	0.5035 (4)	0.4191 (3)	0.8572 (2)	0.0374 (8)	
C15	0.5246 (4)	0.5351 (3)	0.8508 (2)	0.0350 (7)	
C16	0.6338 (3)	0.5729 (2)	0.80828 (18)	0.0263 (6)	
C17	1.0313 (3)	0.6139 (2)	0.82876 (18)	0.0251 (6)	
C18	1.1320 (5)	0.6868 (4)	0.9614 (2)	0.0555 (11)	
C19	1.2037 (10)	0.8086 (8)	0.9813 (5)	0.0623 (17)	0.513 (6)
C19'	1.0611 (10)	0.5946 (9)	1.0106 (5)	0.0623 (17)	0.487 (6)
Br2	0.50916 (3)	0.75741 (2)	0.418423 (18)	0.02812 (9)	
S2	0.16982 (8)	1.01911 (6)	0.45701 (4)	0.02397 (16)	
O4	0.6550 (2)	0.81534 (18)	0.71690 (13)	0.0306 (5)	
05	0.6026 (2)	1.03913 (17)	0.84067 (13)	0.0324 (5)	
O6	0.5409 (2)	0.86917 (17)	0.88122 (12)	0.0286 (5)	
C20	0.1748 (3)	0.9822 (3)	0.35764 (18)	0.0261 (6)	
C21	0.2799 (3)	0.9014 (2)	0.34699 (18)	0.0241 (6)	
C22	0.3574 (3)	0.8687 (2)	0.42091 (17)	0.0201 (6)	

C23	0.3116 (3)	0.9236 (2)	0.48873 (17)	0.0195 (6)	
C24	0.3592 (3)	0.9170 (2)	0.57463 (17)	0.0186 (6)	
C25	0.4871 (3)	0.8656 (2)	0.60608 (17)	0.0215 (6)	
C26	0.5353 (3)	0.8602 (2)	0.69166 (18)	0.0217 (6)	
C27	0.4338 (3)	0.9107 (2)	0.75024 (16)	0.0190 (6)	
C28	0.3404 (3)	1.0092 (2)	0.71490 (16)	0.0191 (6)	
C29	0.2568 (3)	0.9709 (2)	0.63110 (16)	0.0202 (6)	
C30	0.2268 (3)	1.0582 (2)	0.76721 (17)	0.0218 (6)	
C31	0.1404 (3)	0.9897 (3)	0.80725 (19)	0.0290 (7)	
C32	0.0259 (4)	1.0375 (3)	0.8464 (2)	0.0387 (8)	
C33	-0.0024 (4)	1.1527 (3)	0.8463 (2)	0.0412 (9)	
C34	0.0858 (4)	1.2217 (3)	0.8088 (2)	0.0396 (8)	
C35	0.1999 (4)	1.1751 (3)	0.76958 (18)	0.0293 (7)	
C36	0.5346 (3)	0.9491 (2)	0.82818 (18)	0.0225 (6)	
C37	0.6474 (4)	0.8921 (3)	0.9551 (2)	0.0422 (9)	
C38	0.6280 (6)	0.7991 (4)	1.0081 (3)	0.0655 (13)	
H1	0.6111	0.4369	0.3155	0.032*	
H2	0.7940	0.5825	0.2977	0.028*	
H6	1.0451	0.6788	0.5716	0.026*	
H8	0.8608	0.7005	0.7640	0.026*	
Н9	0.9050	0.4673	0.7097	0.025*	
H10A	0.7006	0.4800	0.6083	0.025*	
H10B	0.6718	0.6095	0.6383	0.025*	
H12	0.7632	0.3260	0.7526	0.034*	
H13	0.5787	0.2620	0.8250	0.043*	
H14	0.4284	0.3933	0.8865	0.045*	
H15	0.4635	0.5888	0.8758	0.042*	
H16	0 6484	0.6527	0.8052	0.032*	
H18A	1.2102	0.6289	0.9544	0.067*	0.513 (6)
H18B	1.0740	0.6651	1.0040	0.067*	0.513 (6)
H19A	1 2746	0.8103	1 0317	0.093*	0.513 (6)
H19B	1 1235	0 8640	0.9872	0.093*	0.513 (6)
H19C	1 2581	0.8283	0.9376	0.093*	0.513 (6)
H18C	1 1448	0.7611	0 9939	0.067*	0.487 (6)
H18D	1 2330	0.6618	0.9500	0.067*	0.487 (6)
H19D	1 1287	0.5856	1.0610	0.093*	0.487 (6)
H19E	1 0488	0.5211	0.9784	0.093*	0.487(6)
H19F	0.9619	0.6203	1 0226	0.093*	0.487(6)
H20	0.1117	1 0143	0 3149	0.031*	0.107 (0)
H21	0 2992	0 8704	0 2958	0.029*	
H25	0.5490	0.8310	0.5700	0.026*	
H27	0.3627	0.8495	0.7611	0.023*	
H28	0.4128	1 0723	0.7087	0.023*	
H29A	0.1761	0.9149	0.6366	0.023	
H29B	0 2074	1 0379	0.6068	0.024*	
H31	0.1593	0.9102	0.8080	0.035*	
H32	-0.0334	0.9900	0.8735	0.046*	
H33	-0.0823	1 1843	0.8720	0.049*	
H34	0.0684	1 3016	0.8097	0.048*	
110 1	0.0001	1.2010	0.0071	0.010	

H35	0.2606	1.2236	0.7440	0.035*
H37A	0.6266	0.9671	0.9820	0.051*
H37B	0.7527	0.8938	0.9429	0.051*
H38A	0.5228	0.7968	1.0185	0.098*
H38B	0.6961	0.8135	1.0592	0.098*
H38C	0.6524	0.7257	0.9816	0.098*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03887 (18)	0.02276 (15)	0.02951 (18)	-0.00756 (12)	0.00681 (13)	0.00493 (12)
S1	0.0186 (3)	0.0318 (4)	0.0222 (4)	-0.0066 (3)	0.0026 (3)	-0.0035 (3)
01	0.0262 (11)	0.0335 (12)	0.0313 (12)	-0.0141 (9)	0.0019 (9)	-0.0072 (9)
02	0.0390 (13)	0.0326 (12)	0.0364 (14)	0.0065 (10)	-0.0033 (10)	0.0034 (10)
03	0.0517 (14)	0.0370 (13)	0.0294 (13)	-0.0003 (11)	-0.0008 (11)	-0.0113 (10)
C1	0.0234 (15)	0.0328 (16)	0.0213 (15)	0.0020 (12)	0.0015 (12)	-0.0043 (12)
C2	0.0249 (14)	0.0255 (14)	0.0206 (15)	0.0069 (12)	0.0031 (12)	0.0042 (12)
C3	0.0198 (13)	0.0177 (13)	0.0267 (16)	0.0039 (11)	0.0057 (11)	0.0007 (11)
C4	0.0153 (13)	0.0179 (13)	0.0273 (16)	0.0020 (10)	0.0036 (11)	-0.0022 (11)
C5	0.0190 (13)	0.0163 (13)	0.0241 (15)	0.0027 (10)	0.0046 (11)	0.0010 (11)
C6	0.0168 (13)	0.0217 (14)	0.0263 (16)	-0.0031 (11)	0.0059 (11)	0.0003 (11)
C7	0.0200 (14)	0.0172 (13)	0.0297 (16)	-0.0018 (11)	0.0040 (12)	-0.0026 (11)
C8	0.0195 (13)	0.0202 (13)	0.0231 (15)	-0.0019 (11)	0.0009 (11)	-0.0009 (11)
С9	0.0229 (14)	0.0175 (13)	0.0214 (15)	-0.0033 (11)	0.0027 (11)	-0.0020 (11)
C10	0.0184 (13)	0.0236 (14)	0.0191 (15)	-0.0044 (11)	0.0020 (11)	-0.0011 (11)
C11	0.0217 (14)	0.0219 (14)	0.0180 (14)	-0.0040 (11)	-0.0007 (11)	0.0012 (11)
C12	0.0357 (17)	0.0211 (14)	0.0285 (17)	-0.0019 (13)	0.0047 (13)	0.0012 (12)
C13	0.048 (2)	0.0258 (16)	0.0357 (19)	-0.0106 (15)	0.0062 (16)	0.0073 (14)
C14	0.0434 (19)	0.0421 (19)	0.0288 (18)	-0.0178 (16)	0.0123 (15)	0.0051 (15)
C15	0.0362 (18)	0.0385 (18)	0.0319 (19)	-0.0043 (15)	0.0127 (14)	-0.0016 (14)
C16	0.0298 (16)	0.0204 (14)	0.0287 (17)	-0.0031 (12)	0.0044 (13)	0.0023 (12)
C17	0.0242 (15)	0.0249 (15)	0.0253 (16)	-0.0048 (12)	0.0034 (12)	-0.0022 (12)
C18	0.061 (3)	0.070 (3)	0.028 (2)	-0.002 (2)	-0.0077 (18)	-0.0136 (19)
C19	0.061 (4)	0.093 (5)	0.031 (3)	-0.031 (3)	-0.003 (3)	0.013 (3)
C18'	0.061 (3)	0.070 (3)	0.028 (2)	-0.002 (2)	-0.0077 (18)	-0.0136 (19)
C19'	0.061 (4)	0.093 (5)	0.031 (3)	-0.031 (3)	-0.003 (3)	0.013 (3)
Br2	0.03497 (17)	0.02113 (15)	0.02934 (17)	0.00523 (12)	0.00939 (13)	-0.00052 (12)
S2	0.0190 (3)	0.0310 (4)	0.0221 (4)	0.0037 (3)	0.0031 (3)	0.0031 (3)
O4	0.0284 (11)	0.0332 (11)	0.0313 (12)	0.0125 (9)	0.0048 (9)	0.0088 (9)
05	0.0354 (12)	0.0249 (11)	0.0342 (13)	-0.0089 (9)	-0.0044 (10)	0.0040 (9)
O6	0.0309 (11)	0.0289 (11)	0.0246 (12)	-0.0072 (9)	-0.0035 (9)	0.0083 (9)
C20	0.0233 (15)	0.0327 (16)	0.0220 (16)	-0.0025 (12)	0.0013 (12)	0.0041 (12)
C21	0.0248 (14)	0.0259 (14)	0.0216 (15)	-0.0086 (12)	0.0060 (12)	-0.0024 (12)
C22	0.0169 (13)	0.0174 (13)	0.0259 (16)	-0.0049 (10)	0.0043 (11)	-0.0005 (11)
C23	0.0162 (13)	0.0165 (13)	0.0263 (15)	-0.0050 (10)	0.0049 (11)	0.0023 (11)
C24	0.0186 (13)	0.0147 (12)	0.0232 (15)	-0.0047 (10)	0.0063 (11)	0.0004 (11)
C25	0.0214 (14)	0.0184 (13)	0.0262 (16)	-0.0001 (11)	0.0089 (11)	0.0010 (11)
C26	0.0199 (14)	0.0160 (13)	0.0301 (16)	-0.0012 (11)	0.0049 (12)	0.0050 (11)

C27	0.0201 (13)	0.0163 (13)	0.0211 (15)	-0.0036 (10)	0.0034 (11)	0.0036 (11)
C28	0.0183 (13)	0.0182 (13)	0.0204 (15)	-0.0007 (10)	0.0022 (11)	0.0007 (11)
C29	0.0187 (13)	0.0214 (13)	0.0215 (15)	0.0018 (11)	0.0042 (11)	0.0052 (11)
C30	0.0195 (13)	0.0277 (14)	0.0161 (14)	0.0044 (11)	-0.0021 (11)	-0.0022 (11)
C31	0.0287 (16)	0.0287 (16)	0.0294 (17)	-0.0021 (13)	0.0065 (13)	-0.0024 (13)
C32	0.0329 (18)	0.056 (2)	0.0289 (19)	-0.0015 (16)	0.0122 (14)	-0.0029 (16)
C33	0.0376 (19)	0.059 (2)	0.0263 (18)	0.0207 (17)	0.0074 (15)	-0.0065 (16)
C34	0.054 (2)	0.0369 (18)	0.0260 (18)	0.0212 (16)	0.0003 (16)	-0.0033 (14)
C35	0.0348 (17)	0.0294 (16)	0.0230 (16)	0.0075 (13)	0.0020 (13)	0.0019 (13)
C36	0.0186 (13)	0.0240 (15)	0.0252 (16)	0.0005 (11)	0.0033 (11)	0.0033 (12)
C37	0.048 (2)	0.044 (2)	0.0289 (19)	-0.0130 (16)	-0.0134 (15)	0.0074 (15)
C38	0.095 (3)	0.053 (2)	0.040 (2)	-0.020 (2)	-0.027 (2)	0.0200 (19)

Geometric parameters (Å, °)

Br1—C3	1.888 (3)	C30—C31	1.385 (4)
S1—C1	1.706 (3)	C30—C35	1.392 (4)
S1—C4	1.743 (3)	C31—C32	1.393 (4)
O1—C7	1.225 (3)	C32—C33	1.376 (5)
O2—C17	1.201 (3)	C33—C34	1.374 (5)
O3—C17	1.333 (4)	C34—C35	1.386 (4)
O3—C18	1.474 (4)	C37—C38	1.486 (5)
C1—C2	1.355 (4)	C1—H1	0.9500
C2—C3	1.410 (4)	С2—Н2	0.9500
C3—C4	1.382 (4)	С6—Н6	0.9500
C4—C5	1.455 (4)	С8—Н8	1.0000
C5—C6	1.353 (4)	С9—Н9	1.0000
C5—C10	1.512 (4)	C10—H10A	0.9900
C6—C7	1.451 (4)	C10—H10B	0.9900
С7—С8	1.519 (4)	C12—H12	0.9500
C8—C17	1.511 (4)	C13—H13	0.9500
C8—C9	1.530 (4)	C14—H14	0.9500
C9—C11	1.520 (4)	C15—H15	0.9500
C9—C10	1.526 (4)	C16—H16	0.9500
C11—C12	1.389 (4)	C18—H18A	0.9900
C11—C16	1.390 (4)	C18—H18B	0.9900
C12—C13	1.394 (4)	C19—H19A	0.9800
C13—C14	1.378 (5)	C19—H19B	0.9800
C14—C15	1.386 (5)	C19—H19C	0.9800
C15—C16	1.380 (4)	C19'—H19D	0.9800
C18—C19	1.554 (9)	С19'—Н19Е	0.9800
Br2—C22	1.883 (3)	C19'—H19F	0.9800
S2—C20	1.704 (3)	С20—Н20	0.9500
S2—C23	1.741 (3)	C21—H21	0.9500
O4—C26	1.223 (3)	С25—Н25	0.9500
O5—C36	1.203 (3)	С27—Н27	1.0000
O6—C36	1.339 (3)	C28—H28	1.0000
O6—C37	1.457 (4)	С29—Н29А	0.9900
C20—C21	1.358 (4)	С29—Н29В	0.9900

C21—C22	1.414 (4)	С31—Н31	0.9500
C22—C23	1.384 (4)	С32—Н32	0.9500
C23—C24	1.455 (4)	С33—Н33	0.9500
C24—C25	1.351 (4)	C34—H34	0.9500
C24—C29	1.520 (4)	С35—Н35	0.9500
C25—C26	1.449 (4)	С37—Н37А	0.9900
C26—C27	1.524 (4)	С37—Н37В	0.9900
C27—C36	1.515 (4)	C38—H38A	0.9800
C27—C28	1.534 (4)	C38—H38B	0.9800
C28—C30	1.525 (4)	C38—H38C	0.9800
C28—C29	1.530 (4)		
C1—S1—C4	93.37 (14)	С5—С6—Н6	118.1
C17—O3—C18	115.6 (3)	С7—С6—Н6	118.1
C2—C1—S1	111.6 (2)	С17—С8—Н8	108.4
C1—C2—C3	112.3 (3)	С7—С8—Н8	108.4
C4—C3—C2	115.1 (2)	С9—С8—Н8	108.4
C4—C3—Br1	126.4 (2)	С11—С9—Н9	107.5
C2—C3—Br1	118.5 (2)	С10—С9—Н9	107.5
C3—C4—C5	133.4 (2)	С8—С9—Н9	107.5
C3—C4—S1	107.7 (2)	C5-C10-H10A	108.8
C5—C4—S1	118.9 (2)	С9—С10—Н10А	108.8
C6—C5—C4	123.3 (3)	С5—С10—Н10В	108.8
C6—C5—C10	119.0 (3)	С9—С10—Н10В	108.8
C4—C5—C10	117.7 (2)	H10A—C10—H10B	107.7
C5—C6—C7	123.8 (3)	C11—C12—H12	119.6
O1—C7—C6	121.0 (3)	C13—C12—H12	119.6
O1—C7—C8	120.3 (3)	C14—C13—H13	120.0
C6—C7—C8	118.6 (2)	С12—С13—Н13	120.0
C17—C8—C7	108.0 (2)	C13—C14—H14	120.2
C17—C8—C9	111.7 (2)	C15—C14—H14	120.2
C7—C8—C9	111.9 (2)	C16—C15—H15	119.8
C11—C9—C10	110.4 (2)	C14—C15—H15	119.8
C11—C9—C8	113.2 (2)	C15—C16—H16	119.6
C10C9C8	110.5 (2)	C11—C16—H16	119.6
C5-C10-C9	113.8 (2)	O3—C18—H18A	111.4
C12—C11—C16	118.4 (3)	C19-C18-H18A	111.4
C12—C11—C9	118.4 (3)	O3—C18—H18B	111.4
C16—C11—C9	123.0 (2)	C19—C18—H18B	111.4
C11—C12—C13	120.7 (3)	H18A—C18—H18B	109.2
C14—C13—C12	120.0 (3)	С18—С19—Н19А	109.5
C13—C14—C15	119.6 (3)	C18—C19—H19B	109.5
C16-C15-C14	120.4 (3)	H19A—C19—H19B	109.5
C15-C16-C11	120.8 (3)	C18—C19—H19C	109.5
O2—C17—O3	124.2 (3)	H19A—C19—H19C	109.5
O2—C17—C8	123.9 (3)	H19B—C19—H19C	109.5
O3—C17—C8	111.8 (3)	H19D—C19'—H19E	109.5
O3—C18—C19	102.0 (4)	H19D—C19'—H19F	109.5
C20—S2—C23	93.22 (14)	H19E—C19'—H19F	109.5
C36—O6—C37	116.0 (2)	С21—С20—Н20	124.1

C21—C20—S2	111.8 (2)	S2—C20—H20	124.1
C20—C21—C22	112.2 (3)	C20—C21—H21	123.9
C23—C22—C21	114.8 (3)	C22—C21—H21	123.9
C23—C22—Br2	126.7 (2)	C24—C25—H25	118.1
C21-C22-Br2	118.4 (2)	C26—C25—H25	118.1
C22—C23—C24	133.3 (3)	С36—С27—Н27	108.7
C22—C23—S2	107.9 (2)	С26—С27—Н27	108.7
C24—C23—S2	118.8 (2)	С28—С27—Н27	108.7
C25—C24—C23	123.8 (2)	C30—C28—H28	107.6
C25—C24—C29	119.0 (3)	C29—C28—H28	107.6
C23—C24—C29	117.1 (2)	C27—C28—H28	107.6
C24—C25—C26	123.8 (3)	C24—C29—H29A	108.9
O4—C26—C25	120.9 (3)	C28—C29—H29A	108.9
O4—C26—C27	120.3 (3)	С24—С29—Н29В	108.9
C25—C26—C27	118.8 (2)	C28—C29—H29B	108.9
C36—C27—C26	107.7 (2)	H29A—C29—H29B	107.7
C36—C27—C28	112.0 (2)	C30—C31—H31	120.0
C26—C27—C28	111.1 (2)	C32—C31—H31	120.0
C30—C28—C29	109.2 (2)	С33—С32—Н32	119.6
C30—C28—C27	114.3 (2)	С31—С32—Н32	119.6
C29—C28—C27	110.2 (2)	С34—С33—Н33	120.2
C24—C29—C28	113.6 (2)	С32—С33—Н33	120.2
C31—C30—C35	118.6 (3)	С33—С34—Н34	119.9
C31—C30—C28	122.5 (3)	С35—С34—Н34	119.9
C35—C30—C28	118.7 (3)	С34—С35—Н35	119.6
C30—C31—C32	120.0 (3)	С30—С35—Н35	119.6
C33—C32—C31	120.7 (3)	O6—C37—H37A	110.2
C34—C33—C32	119.6 (3)	С38—С37—Н37А	110.2
C33—C34—C35	120.2 (3)	O6—C37—H37B	110.2
C34—C35—C30	120.8 (3)	С38—С37—Н37В	110.2
O5—C36—O6	124.0 (3)	Н37А—С37—Н37В	108.5
O5—C36—C27	124.5 (3)	C37—C38—H38A	109.5
O6—C36—C27	111.4 (2)	С37—С38—Н38В	109.5
O6—C37—C38	107.5 (3)	H38A—C38—H38B	109.5
C2-C1-H1	124.2	C37—C38—H38C	109.5
S1—C1—H1	124.2	H38A—C38—H38C	109.5
C1—C2—H2	123.9	H38B—C38—H38C	109.5
С3—С2—Н2	123.9		

